
Aurelijus Banelis

Mutation testing

http://nfq.lt
http://auginte.com

Aurelijus Banelis

aurelijus@banelis.lt
aurelijus.banelis.lt
Software developer

http://nfq.lt
http://auginte.com

Mutation testing
with PHP

Inspired by Vaidas’ presentation

http://www.slideshare.net/AgileLietuva/vaidas-pilkauskas-and-tadas-erbinskas-can-you-trust-your-tests

WHY

WHAT

HOW

Why we need mutation
testing

What it is and how it
works

How it can be used in
practice

WHY

WHAT

HOW

Why we need mutation
testing

What it is and how it
works

How it can be used in
practice

It is my code
It should be good

Small mistakes
But huge impact

Illiustration: https://www.youtube.com/watch?v=_BgJEXQkjNQ

https://www.youtube.com/watch?v=_BgJEXQkjNQ

Let’s test everything

Who tests the tester?

Automation and metrics

Iliustration of https://travis-ci.org/aurelijusb/symfony/builds/188337032

https://travis-ci.org/aurelijusb/symfony/builds/188337032

WHY

WHAT

HOW

To be confident about our
code and tests

What it is and how it
works

How it can be used in
practice

WHY

WHAT

HOW

Why we need mutation
testing

What it is and how it
works

How it can be used in
practice

Hambug
One of PHP mutation testing tools

Getting started
{
 "source": {
 "directories": [
 "."
],
 "excludes": [
 "Tests",
 "vendor"
]
 },
 "timeout": 3,
 "logs": {
 "text": "../../../../build/bumbug/humbuglog.txt",
 "json": "../../../../build/bumbug/humbuglog.json"
 }
}

"require-dev": {
 "humbug/humbug": "~1.0@dev"
},

Let’s test on symfony

https://github.com/aurelijusb/symfony/tree/mutation-testing

https://github.com/aurelijusb/symfony/tree/mutation-testing
https://github.com/aurelijusb/symfony/tree/mutation-testing

Mutation statistics

https://github.com/padraic/humbug
https://travis-ci.org/aurelijusb/symfony/builds/188651125

● Killed Mutation (.): A mutation that
caused unit tests to fail which is a
positive outcome.

● Escaped Mutation (M): A mutation
where the unit tests still passed which
is not what we want! Our unit tests
should detect any behaviour changes.

● Uncovered Mutation (S): A mutation which occurs on
a line not covered by any unit test.

● Fatal Error (E): A mutation created a fatal error.
● Timeout (T): This is where unit tests exceed the

allowed timeout

https://github.com/padraic/humbug
https://github.com/padraic/humbug
https://travis-ci.org/aurelijusb/symfony/builds/188651125
https://travis-ci.org/aurelijusb/symfony/builds/188651125

Mutation Details

Under the hood

exec /usr/bin/php7.0 /vendor/.../phpunit
--configuration=/tmp/humbug/phpunit.humbug.xml
--stop-on-failure --tap

 <logging>
<log type="coverage-php"

 target="/tmp/humbug/coverage.humbug.php"/>
<log type="coverage-text"

 target="/tmp/humbug/coverage.humbug.txt"/>
<log type="junit" target="/tmp/humbug/junit.humbug.xml"/>

 </logging>

Drawbacks

- humbug/humbug 1.0.x-dev requires phpunit/phpunit ^4.5|^5.0
- phpunit/phpunit 5.7.5 requires php ^5.6 || ^7.0 -> your PHP version (5.5.9) does not satisfy that
requirement.

WHY

WHAT

HOW

Why we need mutation
testing

Testing framework, change
code, run PHPUnit

How it can be used in
practice

WHY

WHAT

HOW

Why we need mutation
testing

What it is and how it
works

How it can be used in
practice

Metrics for better
release planning

Edge cases for you

Quality for regression
testing

What this line should
do?

./phpunit
--coverage-xml=build/xml

100% mutation proof?

https://github.com/steos/php-quickcheck

Generate random input and test code against predicate

https://github.com/steos/php-quickcheck
https://github.com/steos/php-quickcheck

WHY

WHAT

HOW

Why we need mutation
testing

What it is and how it
works

Planning, test cases,
documentation by tests

References
● http://www.slideshare.net/AgileLietuva/vaidas-pilkauskas-and-tadas-erbinskas-can-you-trust-your-tests
● http://mnapoli.fr/code-coverage-reports-with-github-travis-and/
● https://coveralls.io
● https://phpunit.de/manual/current/en/code-coverage-analysis.html#code-coverage-analysis.edge-cases
● https://akrabat.com/global-installation-of-php-tools-with-composer/
● https://travis-ci.org/aurelijusb/symfony/branches
● https://github.com/steos/php-quickcheck

http://www.slideshare.net/AgileLietuva/vaidas-pilkauskas-and-tadas-erbinskas-can-you-trust-your-tests
http://www.slideshare.net/AgileLietuva/vaidas-pilkauskas-and-tadas-erbinskas-can-you-trust-your-tests
http://mnapoli.fr/code-coverage-reports-with-github-travis-and/
http://mnapoli.fr/code-coverage-reports-with-github-travis-and/
https://coveralls.io
https://coveralls.io
https://phpunit.de/manual/current/en/code-coverage-analysis.html#code-coverage-analysis.edge-cases
https://phpunit.de/manual/current/en/code-coverage-analysis.html#code-coverage-analysis.edge-cases
https://akrabat.com/global-installation-of-php-tools-with-composer/
https://akrabat.com/global-installation-of-php-tools-with-composer/
https://travis-ci.org/aurelijusb/symfony/branches
https://travis-ci.org/aurelijusb/symfony/branches
https://github.com/steos/php-quickcheck
https://github.com/steos/php-quickcheck

Mutation testing
with PHP

Questions?

Aurelijus Banelis VilniusPHP 0x322017-01-05

